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Abstract  
With the Human Microbiome becoming an increasingly popular topic among the scientific community, there’s been a growing 
need to publish newly obtained data in the form of research articles to contribute to the forefront of this field. However, only the 
most enticing research articles–often through a well-written abstract–will impact this new field the best. Similarly, the same can 
be applied to the forefronts of other scientific fields. Here, we assessed the content and syntactical trends between the abstracts 
of a range of high-impact factor Human Microbiome research articles from Nature as a model for what an appealing abstract 
would entail. Specifically, this study focused on assessing the syntactical variations found within the first third of a typical scien-
tific abstract and offering potential explanations for the different possible use cases of the variants. 
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Introduction 
In many cases, the abstract of a hypothesis testing focused journal 
article under the biomedical sciences aims to not only provide an 
overview of the content presented within the article but also attract 
potential readers into reading the article1. By offering an initial 
impression to the important portions discussed in the article, the 
abstract of hypothesis testing journal articles in the biomedical 
sciences highlights elements of the entire article’s hypothesis, ob-
jective, experiments, and result findings that either align or derail 
with the article’s original hypothesis.  

 
However, many biomedical science articles that follow a simple 
abstract structure of an article being published in a journal–
whether it is a top journal like Nature, or The New England Jour-
nal of Medicine–don’t necessarily correlate with a high individual 
impact factor on outreach to audiences1, 2. In fact, a biomedical 
science article’s impact factor depends on a myriad of ways that 
its respective audience is impacted, whether it be through cita-
tions, views, or file downloads. Up to this point, any prospective 
practitioners that enter the field of biomedical sciences may have 
trouble discerning between writing an appealing abstract which 
garners the attention of many, or an acceptable abstract that isn’t 
as popular.  

 
In this study, we specifically focused on analyzing a set of high-
impact factor abstracts in the Human Microbiome field published 
in “Nature,” a scientific journal ranked among the top scientific 
journals that cover information from all fields between the sci-
ences and technology3. We hypothesized that the organizational 
pattern of syntactical elements in abstracts of high impact Human 
Microbiome articles can model successful syntactical elements in 
high-impacting abstracts from other fields. Because newer topics 
at the forefront of the sciences may not have many examples of  
 

 
 
highly impactful writing, this study models what successful, im-
pactful writing may look like for those fields.  

 

Methods 
High Impact Factor Article Search-up 
The articles from this study were all obtained directly from the 
Nature journal’s online database, accessed by UC resources. To 
increase our specificity of articles, we then navigated directly to 
the Nature journal website and searched the keywords “Human 
microbiome AND Diet'' and used the filters “Nature,” “Re-
search,” and “2018-2022” to access a similar batch of articles to 
get 53 total search results. Among the 53 total search results, there 
were 15 articles that did not match our keyword search by search 
engine error, giving us a total of 38 articles to analyze (Extended 
Data Fig. 1a).  
 
Individual Article Abstract Analysis 
Among each of the n=38 articles obtained, we checked for the 
presence of fifteen components of a well-written abstract as cate-
gorical variables based on Bahadoran et al.’s guide on writing a 
successful biomedical science abstract (Supplementary Table 1). 
Each analysis followed the same four steps: 1.) Download the ar-
ticle from “Nature” to the annotation editor, GoodNotes. 2.) Fol-
lowing 15 components of an abstract in order, identify and anno-
tate the presence of those components within the abstract section 
of the downloaded article. 3.) Mark a “1” for components that are 
present and mark a “0” for components that are not present4. Use 
the word counter software, CountWordsWorth, and determine the 
average number of words per sentence and the total number of 
words among each abstract (Supplementary Table 2). 
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Prevention of Bias from Impact Factor  
To prevent bias in marking the presence of components of an arti-
cle caused by knowing its impact factor, we assigned impact fac-
tors to each article using the Altmetric score after all the 38 arti-
cles’ abstracts were analyzed (Supplementary Table 2). The Alt-
metric score is a measure of an article’s overall impact on its au-
diences given that it provides a quantitative value that summarizes 
the reach, promiscuity, potential bias, and source mentions of an 
article4, 5, 6.  
 
Statistical Analysis and Article Correlation 
To obtain statistical data and perform quantitative analysis be-
tween the 38 abstracts, we first took the weighted average of the 
15 components of a well-written abstract for each article, then per-
formed our statistical analysis and tests on Prism 9, a graphing and 
biostatistical analysis software, using their correlation test be-
tween the Article Altmetric score and four factors: Abstract Com-
ponent Weighted Average, Abstract Total Word Count, and Ab-
stract Average # of Words/Sentence (Supplementary Table 2).  
 

  
Each of these tests was weighted at a critical value of 0.05 when 
p-values were analyzed for hypothesis testing. The null and alter-
native hypotheses for correlation tests are: Ho: There is no corre-
lation between the Altmetric score and the 3 variables. Ha: There 
is some sort of correlation between the Altmetric score and at least 
1 of the 3 variables. 
 

Findings and Discussion 
Article Syntactical Components Show No Significant Differ-
ence but Have Variation Trends   
Initially, we hypothesized that because all our articles should be 
already highly impactful, their syntactical trends should be rela-
tively similar, and therefore, their Altmetric scores are large and 
impactful enough to the point where there should be no correla-
tion between variations in Altmetric score and syntactical trends. 
We then performed a robustness test to determine if our articles 
we tested for whether our 38 samples are statistically identical or 
not through a correlation test.  
 



 

A Deeper Dive into the Syntactical Trends Among High Impact Factor Abstracts in Scientific Literature — 3 

In our test, we correlated the Altmetric scores of our 38 samples 
and 3 variables: Abstract Component Weighted Average (r = 
0.246, P-value ≈ 0.1892 ), Abstract Total Word Count (r = 0.113, 
P-value ≈ 0.8499 ), and Abstract Average # of Words/Sentence (r 
= -0.043, P-value ≈ 0.2341). Results on Prism 9 have shown that 
there is no significant correlation between the Altmetric score and 
any of the 3 variables (Fig. 1a.). Additional analysis of our Altme-
tric scores has also shown that our minimum and maximum scores 
are between the 96th and 99th percentile in terms of impact4. In 
short, our robustness test has shown that there is no correlation 
between variations in Altmetric score and syntactical trends of our 
abstracts, highlighting the importance of this study proceeding 
with a relatively pure sample of articles that are similar enough in 
terms of syntactical elements and impact. 
 
Through this test, we’re able to direct our focus towards analyzing 
the smaller variations that have been displayed inside our data, 
specifically Bahadoran et al.’s 15 components of an abstract. Spe-
cifically, we observed that there is the variation found in the num-
ber of abstracts that contain stress statements (C-2). Roughly ⅓ of 
the abstracts present does not contain a stress statement. Addition-
ally, we also observed that almost all abstracts are missing one of 
Bahadoran et al.’s components, Pertinent Numerical Data (C-8, 
Fig. 1b.).   
 
Variation Within the First Third of the Abstract 
Within the first third of the abstract, we see one major variation  
 

in its general structure around the presence of the stress state-
ment, a phrase consisting of conjunctions–statements like “but,” 
“however,” “therefore,” etc. that focus on identifying the major 
gap in knowledge in a field. Generally, the stress statement in a 
scientific hypothesis testing article follows the explanation of 
background information and precedes a statement about the arti-
cle’s hypotheses or questions to be addressed7. However, our re-
sults have shown that 14 of the 38 articles are missing a stress 
statement and instead just have a long piece of background in-
formation followed by the article’s hypothesis or questions.  
 
In a deeper analysis, we determined that based on our initial ob-
servations there are a total of 4 unique variations in the syntactical 
structure of the first third of the abstract. These 4 variations were 
split into 2 groups, one group consisting of abstracts that contain 
the stress statement and another consisting of abstracts without 
the stress statement. Both groups contained one variation with a 
longer background and another with a shorter background. Fur-
ther, we noticed that the group of abstracts without a stress state-
ment contained a modified version of the stress statement’s em-
phasis on the gap in knowledge in the field. Specifically, we see 
the longer versions of the abstracts with Needham et al. or 
Funabashi et al. and shorter versions of the abstracts with Zeevi 
et al. and Gacesa et al.’s abstracts (Fig. 2a, Fig. 2b, Fig. 2c, Fig. 
2d). 
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Among these four variants, our results showed each of them fol-
lowing a similar syntactical pattern of starting with a background, 
then addressing a gap in knowledge–whether it is through a stress 
statement or integrated in the background–and ending with the hy-
potheses or questions present (Fig. 2a, Fig. 2b, Fig. 2c, Fig. 2d). 
Despite the length of the background, it seems that if the author 
was able to smoothly integrate the gap in understanding into their 
background, they would do so as displayed through Gascesa et al. 
and Funabashi et al.’s abstracts (Fig. 2b, Fig. 2d). On the other 
hand, if the author was not able to integrate the gap in understand-
ing as well, they instead used a simple stress statement as seen 
with Needham et al. and Zeevi et al.’s abstracts (Fig. 2a, Fig. 2c).  
 
In a broader context, this means we have two successful ways of 
communicating the gap in knowledge in biomedical scientific ab-
stracts. The first is to incorporate the gap in knowledge in our 
background smoothly. If we’re unable to do so, we can rely on the 
second, where we utilize a stress statement to specifically high-
light the gap in knowledge.  
 
Variation Among the Numerical Data in the Last Third of the 
Abstract 
Another variation observed among our 38 articles on Bahadoran 
et al.’s 15 components is that 90% of them were missing the Per-
tinent Numerical Data category (C-8). This completely contrasts 
with Bahadoran et al.’s suggestion for including slight numerical 
values to support conclusions in an abstract1. 
We believe one reason why this may be true for most of our data 
is that reviewers and other audiences that read an abstract want to 
understand the significance, final claims, and findings of a study, 
basing what they read off trust7. In this case, under the assumption 
that the scientific community is built upon the aspect of trust in 
ethical research, there is no need to present statistical p-values in 
the abstract when readers can trust the article to present a more 
complete version of the claims later in the article7. 
 
Final Discussion 
While the Altmetric score and syntactical components of a bio-
medical science abstract have been associated together in this 
study, other factors that affect the Altmetric score remain largely 
unexplored. Therefore, this study has several limitations. First, 
other components in a biomedical article like the methods, find-
ings, and discussion section may also have an effect on the articles 
impact factor as measured by the Altmetric score. Second, because 
all our successful abstract samples originated from the journal 
“Nature,” not any other journal, there may be inherent bias in 
terms of how successful “Nature” articles compare with other suc-
cessful biomedical scientific journals like “Science,” “Cell,” etc. 
Finally, because this study searched for abstracts under a topic ris-
ing in popularity in the scientific field, The Human Microbiome, 
correlations, and results may be different for abstracts in fields that 
are not under a topic rising in popularity in the scientific field.  
 
Overall, this study’s comparison between the Altmetric score and 
syntactical components of a biomedical science abstract using Ba-
hadoran et al.’s 15 components [also average word count and total 
word length] has yielded a pure sample of highly impactful ab-

stracts. These results suggest that Bahadoran et al.’s 15 compo-
nents of a successful abstract can potentially be referenced by an-
yone interested in writing a successful biomedical scientific ab-
stract. With these initial findings, this study also sets up a potential 
framework for future studies on the syntactical trends within a 
journal article’s effect on the article’s impact factor.  
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Supplementary Information  

 

 
 
Supplementary Table 1 | The 15 parameters used from Baradoran et al.’s Abstract Guide 
The 15 parameters, broken down into 4 sections: the first ⅓, ⅔, 3/3 of the abstract, and and grammatical structures. Contains 
conditions that are used for the weighted average score. 
 
 

  



 

A Deeper Dive into the Syntactical Trends Among High Impact Factor Abstracts in Scientific Literature — 7 

 
 

 
Supplementary Table 2 | Comparison and Raw Data Before Statistical Tests 
Contains all of the data that is used for the statistical tests on Graphpad Prism 9 
 
 
 

 
 


